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The observed 97.7% optical transparency of graphene has been linked to the value 1/137 of the fine structure
constant, by using results for noninteracting Dirac fermions. The agreement in three significant figures requires
an explanation for the apparent unimportance of the Coulomb interaction. Using arguments based on Ward
identities, the leading corrections to the optical conductivity due to the Coulomb interactions are correctly
computed �resolving a theoretical dispute� and shown to amount to only 1%–2%, corresponding to 0.03%–
0.04% in the transparency.
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The optical transparency of graphene is determined by its
optical conductivity ���� and c, the speed of light,1

t��� = �1 + 2�����/c�−2. �1�

Recent experiments2 on suspended graphene found t���
�0.977, independent of �, in the visual regime �450 nm
���750 nm�. This observation �see also Refs. 3–5� can be
elegantly rationalized in terms of noninteracting Dirac par-
ticles with optical conductivity6 ��0��kBT���D�= �

2 e2 /h.
Here D is the upper cutoff energy for the linear dispersion, of
order of several electron volts, and T is the temperature.
Assuming �=��0� yields t����0.977 462 9�2�, in excellent
agreement with experiment. Thus, the optical transparency of
noninteracting graphene t���= �1+��QED /2�−2 is solely de-
termined by the value of the fine structure constant of quan-
tum electrodynamics: �QED=e2 / �	c��1 /137.035 999�6�.
Despite the beauty of this reasoning, a natural question
emerges: Why can one ignore the electron-electron Coulomb
interaction? After all the Coulomb interaction in graphene is
poorly screened and its strength is governed by its own ef-
fective fine structure constant �=e2 / �	v��2.2 that is sig-
nificantly larger than �QED because of the smaller velocity7

v�106 m /s. The quantitative agreement between experi-
ment and a noninteracting theory clearly requires a quantita-
tive analysis of the size of interaction corrections to the op-
tical conductivity and transparency of graphene.

In this Brief Report we determine the leading interaction
corrections to the optical transparency and demonstrate that
they amount to only 0.037% in the visual regime. This sur-
prisingly small correction is the consequence of �i� a perfect
cancellation of the divergent �i.e., proportional to ln D / ����
parts of Feynman diagrams that contribute to the conductiv-
ity and �ii� a near cancellation of the nondivergent contribu-
tions. While the first result has been stated earlier by us8 as
well as in Ref. 9, the latter effect has been a subject of a
dispute.9–11 Below we resolve this dispute and demonstrate
that the leading perturbative correction to the conductivity
was correctly analyzed by Mishchenko in Ref. 10. We show
that perturbative corrections to the conductivity must be ob-
tained by guaranteeing that momentum cutoffs, used to regu-
larize divergences, are introduced in a fashion that respects
Ward identities and thus guarantees charge conservation.

The low energy Hamiltonian for electrons in graphene12 is
obtained by expanding to leading order in gradients near the

nodes of the tight-binding dispersion, yielding the following
nodal-fermion Hamiltonian:

H = v�
k,i


i
†�k�k · �
i�k� +

e2

2
� d2rd2r�

��r���r��
�r − r��

. �2�

Here i=1¯N, with N=4 counting the two spin indices and
two independent nodes in the Brillouin zone, �� are the Pauli
matrices, and we have set 	=1. It is simple to show that the
charge density ��r�=�i=1

N 
i
†�r�
i�r� and current density

j�r�=v�i=1
N 
i

†�r��
i�r� are related by the continuity equation

��

�t
+ � · j = 0. �3�

The optical conductivity is related by the Kubo formula to
the retarded current-current correlation function

���� =
e2

2�
Im�fxx

R �q = 0,�� + fyy
R �q = 0,��� . �4�

Here, f�

R �q ,�� is the retarded correlation function deter-

mined from the Matsubara function f�
�Q�= 	j��Q�j
�−Q�

by analytically continuing i�→�+ i0+. We use the conven-
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FIG. 1. �Color online� Optical transparency, Eq. �1�, of
graphene, from Ref. 2 �points� along with theoretical curves for the
case of interacting graphene within the present theory, Eq. �9� with
C1�0.01 �solid red line�, according to the theory of Ref. 9
�C1�0.51; dot-dashed green line�, and for noninteracting Dirac fer-
mions �dashed blue line�.
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tion Q= �−i� ,q� and correspondingly write j0�Q�=��Q� for
the charge density.

The theory for the optical conductivity in graphene with
electron-electron Coulomb interaction was developed in
Refs. 8 and 9. Using renormalization-group �RG� arguments
it holds that the effective fine structure constant of graphene,
�, becomes a running coupling constant ��l�, where l is the
flow variable of the RG approach. In the case of graphene
��l� decreases logarithmically as one lowers the typical en-
ergy scale.8,9,13–17 The optical conductivity ��� ,T ,�� at fre-
quency �, temperature T, and for the physical coupling con-
stant � is related to its value at a rescaled frequency
�R�l�=Z�l�−1�, rescaled temperature TR�l�=Z�l�−1T as well
as the running coupling constant via

���,T,�� = �„�R�l�,TR�l�,��l�… . �5�

The scaling factor up to one loop is given by
Z�l�=e−l�1+ �

4 l�. Equation �5� implies that the conductivity is
scale invariant under the RG flow. This result is true to arbi-
trary order in perturbation theory as can be shown following
arguments by Gross.18 It is physically due to the fact that the
electron charge is conserved.19 The scaling functions �R�l�
and TR�l� grow under renormalization while ��l�
decreases.8,19 Thus, in the relevant collisionless regime
��T is it sufficient to analyze the high-frequency
��R�l��D� weak-coupling limit, where

��D,0,�� = ��0��1 + C1� + C2�2 + ¯� . �6�

Here, the numerical coefficients Ci are determined by per-
forming an explicit perturbation theory. The scaling law Eq.
�5� yields the conductivity as a function of frequency where
we replace � by the running coupling constant

� → ���� = ���1 +
�

4
log�D/��
 , �7�

here obtained to leading logarithmic accuracy.8,9,13–17 The re-
sult is that interactions only give rise to additive corrections
to ��0� that are of the form

���� = ��0��1 + C1���� + C2�2��� + ¯� . �8�

Note, this behavior is correct in the collisionless regime
��kBT. Qualitatively different behavior occurs in the oppo-
site hydrodynamic regime17 ��kBT.

Since ���→0�=0, it follows from Eq. �8� that
���→0�→��0�. However, ���� only vanishes as
4 / log�D /�� and corrections could easily be significant in the
visible part of the spectrum where � and D are comparable.
The dominant correction is due to the C1� term and will be
analyzed in this Brief Report. Combining Eqs. �7� and �8�,
and neglecting the higher-order terms, we have

���� = ��0��1 +
C1�

1 + 1
4� log�D/��� . �9�

Calculations of C1 were presented in Refs. 9 and 10, however
with different results. While the authors of Ref. 9 obtained
C1= �25−6�� /12�0.513, Mishchenko10 obtained a signifi-
cantly smaller value C1= �19−6�� /12�0.0125, which was
however disputed in Ref. 11. Determining the correct value

of C1 is important for two reasons. First, there is no obvious
mistake in either Ref. 9 or 10. It is clearly important from a
purely theoretical point of view to settle this issue and set the
criteria for correct calculations of interaction effects in
graphene. Second, as we discuss in more detail below and
illustrate in Fig. 1, the coefficient determined in Ref. 9 is not
consistent with experiment, impling that qualitatively new
phenomena or even higher-order corrections would have to
be invoked to understand the observations of Ref. 2.

We now obtain ���� by calculating the correlation func-
tion f�
�Q� which, as follows from Eq. �3�, satisfies

Q�f�
�Q� = 0, �10�

with the repeated index summed over �=0,x ,y. When cal-
culating f�
�Q�, the leading contributions to which are
shown in Fig. 2, we must ensure that Eq. �10� is satisfied at
each order in �.

The zeroth-order contribution, Fig. 2�a�, corresponds to
the current-current correlation function f�


�0��Q� of noninter-
acting Dirac particles and yields16

f�

�0��Q� =

N

16�Q�
�Q2��
 − Q�Q
� , �11�

which obeys Eq. �10�. Performing the analytic continuation
and inserting the result into the Kubo formula yields, after
restoring proper units, ��0�= �e2

2h for N=4. This leads to the
97.7% optical transmission discussed above.

Next we analyze the three leading corrections to ��0� as
shown in Figs. 2�b�–2�d�. The diagrams in Figs. 2�b� and
2�c� yield the same contribution with interactions entering
via self-energy insertions with the leading self-energy

��p� = − e2�
P�

V�p − p��G�P�� , �12�

where �P�. . .=T����p�
d2p�
�2��2 . . . and V�p�= 2�

�p� is the Fourier-
transformed Coulomb interaction. The fermion propagator is
given by
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FIG. 2. Feynman diagrams for the leading-order contributions to
f�
�Q� and ����. Diagram A is the O��0� contribution, while dia-
grams B, C, D are O���. Full lines represent fermions and dashed
lines represent the Coulomb interaction.
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G�P� =
− i��0 − vp · �

�2 + v2p2 . �13�

The self-energy, Eq. �12�, diverges logarithmically and must
be regularized, for example by introducing an upper momen-
tum cutoff ��D /v. We will show that the discrepancy be-
tween previous calculations of ���� can be traced to the fact
that, in Eq. �12�, there are two obvious ways to introduce the
ultraviolet �UV� cutoff �.

Thus, upon evaluating the frequency summation and mo-
mentum integrals, we obtain

��p� =
1

4
�vp · � ln�4�b

p
� , �14�

where the number b depends on the cutoff procedure, with
b=e−1/2 if we evaluate the momentum integral using the cut-
off �p����, i.e., by confining fermion states to a circle near
the node. �Note we always discard contributions that vanish
for � / p→��. On the other hand, if we evaluate the momen-
tum integral by restricting �p−p����, i.e., by having a finite
Coulomb interaction at short distances �see also Ref. 11�, we
find that b=e1/2. This corresponds to replacing the Coulomb
potential via V�p�→V��p�=2����− �p�� / �p�. We emphasize
that the log-divergent contribution to ��p� is independent of
the regularization procedure, with the difference being in the
subleading contributions.

As we will show, the two different values that have been
determined for C1 in Refs. 9 and 10, respectively, are directly
related to the two different values for b in the self-energy as
it enters in the diagrams of Figs. 2�b� and 2�c�. The diagram
Fig. 2�d� is unaffected by the regularization procedure.
Which result for b, i.e., which regularization procedure, is
correct? The answer comes from the Ward identity, which, as
we show next, is only satisfied if we implement the momen-
tum cutoff by restricting the momenta in the Coulomb poten-
tial to �p−p����, implying that Mishchenko’s result10 is
correct.

To demonstrate that the proper cutoff procedure is to re-
strict �p−p���� in the Coulomb potential, we analyze the
leading interaction corrections �Figs. 2�b�–2�d��, which we
call f�


�1��Q�. These satisfy

Q�f�

�1��Q� = N��

P
�

P�
V��p − p�� � Tr�G�P� + Q�G�P

+ Q�G�P� + Q��
 − G�P���
G�P��G�P�� .

�15�

This result was obtained from the three diagrams Figs.
2�b�–2�d� by simply using the identity

G�P��i��0 − q · ��G�P + Q� = G�P� − G�P + Q� , �16�

and the cyclic property of the trace. At this point, the UV
cutoff only enters via V��p�, so that we can shift P→P−Q
and P�→P�−Q in the first term, again use the cyclic prop-
erty of the trace, and obtain

Q�f�

�1��Q� = 0, �17�

the required result. Note that other regulation schemes for

the UV behavior will not necessarily work in this way. In
particular, regulating the momenta by restricting the Green’s
function momentum arguments amounts to replacing
G�P�→G�P����− �p��; with such a replacement, Eq. �16�
and thus Eq. �15� will not be valid. We conclude, then, that in
graphene momenta must be regularized using V��p�.

The same conclusion can be arrived at by considering the
leading corrections to the current vertex

���P,Q� = − ��
K

G�K���G�K + Q�V��k − p� . �18�

Again using Eq. �16�, we obtain

Q��� = − ��
K

�G�K + Q� − G�K��V��k − p�,

= ��P + Q� − ��P� , �19�

which is the correct Ward identity. Once again, alternate
schemes for cutting off the momentum integrals are not guar-
anteed to yield a proper Ward identity of this form. Our
finding that a regularization in terms of a hard fermion cutoff
violates charge conservation is analogous to the observation
in QED that incorrect regularization schemes yield unphysi-
cal results such as a photon mass.20

Our final tasks are to evaluate the contributions to the
current-current correlation function and to determine the
conductivity using the Kubo formula Eq. �4�. We first con-
sider the diagrams B and C, which are identical. Recognizing
the self-energy insertion, we have �with an overall 2 for the
two diagrams�

f�

�1��BC = − 2N�

P

Tr�G�P���G�P + Q��
G�P���p�� .

�20�

Evaluating the trace, and performing the frequency integral
and analytical continuation yields

Im f��
�1�R�q = 0,���BC = −

N��

16
ln

8v�be−1/2

�
, �21�

where the repeated � index refers to the sum over the xx and
yy components as in Eq. �4�. Analyzing the diagram D of
Fig. 2, which can be written as

f�

�1��D = − N�

P

Tr�G�P����P,Q�G�P + Q��
� , �22�

it turns out that the result does not depend on the details of
the regularization procedure and yields

Im f��
�1�R�q = 0,���D =

N��

16
�ln

8v�

�
+

19 − 6�

6

 . �23�

By examining Eqs. �21� and �23�, it is clear that the depen-
dence on the high energy scale � vanishes, in agreement
with general scaling arguments.8,9 Plugging these results into
Eq. �4� yields Eq. �9� with coefficient
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C1 =
19 − 6�

12
−

1

2
ln be−1/2. �24�

We indeed see that the correct cutoff procedure, with
b=e1/2, yields C1= 19−6�

12 , whereas the other cutoff procedure,
corresponding to b=e−1/2, yields9 C1= 25−6�

12 .
We have verified19 that the same result holds within alter-

nate regularization procedures that do not use sharp cutoffs,
as long as the Ward identity is satisfied. For example, replac-

ing the Coulomb interaction V�r�→V��r�=
e2r0

−�

r1−� with r0 a
length scale and ��0 �putting the physical system, at d=2,
slightly below its own upper critical dimension� regulates all
integrals in a way consistent with Eq. �17�. We obtain �for
�→0�

Im f��
�1�R�BC = −

N��

16
� 1

�
+ ln

4v
�r0

− �E
 ,

Im f��
�1�R�D =

N��

16
� 1

�
+ ln

4v
�r0

− �E +
19 − 6�

6

 , �25�

with �E the Euler constant. Once again, while the separate
contributions diverge with �→0, their sum is convergent
and yields the coefficient C1= 19−6�

12 .
As we have discussed, Eq. �9� implies that the correction

to ��0� is small at low photon energies ��D regardless of
the value of C1. However, at larger �i.e., optical2,5� frequen-
cies, the second term may become significant, depending on
the value of the number C1. Nair et al.2 found the conductiv-
ity to be � /��0�= �1.01�0.04�. If we take the value
C1�0.513 from Ref. 9, however, Eq. �8� predicts a large
frequency-dependent correction to the conductivity that is
not consistent with these error bars, giving, for example at
photon wavelength �=600 nm �or 	�=2.07 eV�,
� /��0��1.667, assuming the bandwidth D=7.24 eV. In

contrast, using C1=0.0125 of Ref. 10, yields for the same
parameters, � /��0��1.016, consistent with the error bars of
Nair et al.2 In Fig. 1 we show the optical transparency that
result from both values for C1 �using bandwidth
D=7.24 eV�, along with the free-Dirac fermion result as
function of wavelength � in comparison with experiment.

Given the smallness of interaction corrections, with
� /��0��1.016 for the correct value of C1 �a correction com-
parable to corrections due to the true tight-binding band
structure�, it is unlikely that optical measurements will reveal
interaction effects. Electron-electron interactions are much
more visible in the enhanced diamagnetic response8 or the
hydrodynamic transport.17

In summary, we determined the leading corrections to the
optical conductivity and transparency of graphene and find
that they are very small and determined by the fine structure
constant �QED up to corrections of order 1%–2% in the con-
ductivity and 0.03%–0.04% in the transparency. Correctly
regularizing the UV-divergent contributions required using
Ward identity arguments to resolve previous discrepancies in
recent literature �a controversy that persists21�. Our work
demonstrates that there are no discrepancies in ���� ob-
tained by different theoretical methods,10 such as the Kubo
formula, the density polarization approach, or kinetic ap-
proaches, if charge conservation is guaranteed at all stages of
the calculation. Our methods confirm and, more importantly,
justify the result first obtained by Mishchenko10 and provide
a general prescription for calculating interaction corrections
in graphene.
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